
CFL3D User’s Manual 225

10
CHAPTER 10 Troubleshooting

Mistakes made in setting up a problem for CFL3D are (hopefully) diagnosed by the
code’s error checks. The error messages, which are printed to unit 11 should be clear
enough so that the user can easily identify and remedy the problem. This chapter contains
a few general tips based on common user errors.

Unfortunately, it is sometimes the case with CFL3D (as with any CFD code) that the
code blows up, even though the user has apparently done everything right. For example, if
the code tries to calculate a negative square root, it will bomb with a floating point error.
What to do in such cases is never clear and is often more of an art form than a science.
Listed below are some things to try and/or look for when experiencing difficulty with
CFL3D (when it blows up for no easily-apparent reason). These limited suggestions for
what to try when problems occur are based in part on the code-developers’ experiences
and in part on what is heard from the user community:

1. When the code gives the message “negative volume” or blows up (end-of-file) when
trying to read the grid, check the following:

(a) Be sure the grid is written correctly, using the right-hand rule (see “The Right-
Hand Rule” on page67) for both and . Either CFL3D format or
PLOT3D/TLNS3D format may be used. See “Grid File” on page65 for a descrip-
tion of the two formats. Remember to setngrid > 0 for CFL3D format andngrid <
0 for PLOT3D/TLNS3D format.

(b) Check the grid near the point where the negative volume is indicated. Make sure
there are no grid lines that cross or are positioned incorrectly.

(c) When running on a workstation, be sure to use the necessary precision for arrays
(many turbulent grids are too fine to use single precision).

(d) Be consistent with the precision between the grid and the code (i.e., the grid must
be created in double precision if the CFL3D code is “made” that way).

2. Check the grid. It seems that 95% of the time, the problem is with the grid. Too much
stretching too quickly, poor “quality”, badly-skewed cells, etc. can all cause problems.
Also be sure that the gridand all its coarser levelsare of a reasonable size (when using
multigrid, a coarser grid level should not betoo coarse).

3. Be sure that the correct direction (either or) is “up” according to the type of grid
being used. See “Grid File” on page65.

x y z, , i j k, ,

z y

CHAPTER 10 Troubleshooting

226 CFL3D User’s Manual

4. If problems occur when starting a run for a very large grid, debugging on a coarser
grid is recommended. Unfortunately, running on a coarser grid level using themseq
flag still requires a large percentage of the full amount of memory. Because this can be
frustratingly slow for very big grids, the use of the following tools, found in theTools
subdirectory (see “The Code and Supplementary Files” on page9), is recommended:

After employing these tools to create a smaller grid and the corresponding input file,
rerunprecfl3d on the new input file and then recompile CFL3D and debug the prob-
lem on the coarser grid. The required memory will be substantially smaller than that
necessary for the original grid.

5. Be sure to save a copy of the original codebefore making any modifications. If an
error is made, the revision can be compared with the original version to aid with
debugging. If additional subroutines are added, be sure they are added correctly to the
makefile. If they are merely “tacked on” to the beginning of line 2 in the makefile, then
they will not necessarily be recompiled correctly whencfl1.h, etc. are changed.

6. Peruse the output files early in the computation to make sure that they make sense. For
example, if part of the grid is in motion, is it moving at the correct speed and in the
expected direction? Do the results “look” as expected? Valuable CPU time can be
saved by not running erroneous calculations for hundreds of iterations.

7. Check to make sure the boundary conditions are implemented correctly. This includes
all 1-to-1 and patched interfaces. For 1-to-1 boundaries, look for “mismatch” in the
output files for the “geometric mismatches” that may be a source of error. These num-
bers should all be close to zero. Small mismatches may be acceptable, but large mis-
matches (O(1)) most likely indicate that one of the segments on the block boundary
has been specified incorrectly, or possibly backwards. For patched or overlapped inter-
faces, it is quite a bit more difficult to assure valid communication stencils. Check all
outputs from ronnie for patched grids and from MaGGiE for overlapped grids.

8. Try lowering the CFL number significantly initially and allowing it to “creep” up as
the solution progresses. Unless the grid isreallybad, the CFL number should not have
to be set below 0.1 (dt = -0.1). Sometimes it may be necessary toremain at low CFL
numbers for particularly difficult problems. The optimum CFL number to run at is
generally around 5 (dt = –5.0), for most problems on decent grids.

9. Make sure the executable is appropriate for the input file, particularly if any changes
have been made to itor to the grid since the previous run. Runprecfl3d to make sure
the dimensioning is correct in thecfl*.h files. If precfl3d changes them, CFL3D
must be recompiled.

10.Try employing mesh sequencing. Many people have found this to be beneficial for
tough problems! For a description of mesh sequencing, see “Mesh Sequencing” on
page134.

 everyotherp3d.f – reads a PLOT3D grid and writes out a coarser (every other grid
point) grid

 v5inpdoubhalf.f – reads a CFL3D input file and creates a new input file applicable
for either half or double the number of grid points

CFL3D User’s Manual 227

10 Troubleshooting

11.Peruse all output files (there are a lot of them!) for any clues as to what might be
wrong.

12.Try restarting from a less difficult, converged case on the same grid. For example, run
and converge the configuration atalpha = 0 first; then restart at the higher, more diffi-
cult angle of attack(or Mach number or whatever).

13.Whenreally desperate, try running with first order in space for awhile (nitf o = ncyc),
then restart with third order from that. Or, try using second order (rkap0 = -1) rather
than third order (rkap0 = +0.333333).

14. If multigrid is being used, try turning multigrid off for a short time. If multigrid isnot
being used, turn iton! In general, for steady-state problems, multigrid should defi-
nitely be used. See “Multigrid” on page125 for instructions.

15.Be sure to use the latest version of the code (as of November 1996, Version 5.0).

16.There only seems to be sporadic success when varying idiag, ifds, or iflim . In general,
if trouble arises when the default values are used for these variables, then trouble will
occur even if they are altered. There are of course exceptions. For example, often
hypersonic flow cases run more successfully with flux-vector splitting (idiag = 0).
Also, sometimes, if a particular configuration is marginally stable (i.e., on the brink of
going unsteady), then flux-vector splitting, which has more inherent dissipation than
flux-difference splitting, may yield a steady solution while flux-difference splitting
may go unsteady. What this means, however, is unclear, since it may be that the real
physics of the flow should go unsteady. Presumably in such a case, if the grid is refined
extensively, even flux-vector splitting should probably go unsteady.

17.There is little recent experience with this, but experimentation can be made withngam
(type of multigrid cycle), mitL (number of iterations on each multigrid level), and
mglevg (the number of multigrid levels).

18. Another feature that is rarely used, but could be experimented with is residual correc-
tion and/or smoothing with multigrid. Setissc and/orissr to 1. (Zero is the default.)
These parameters have been known, in isolated instances (particularly for hypersonic
cases), to cause a “bombing” solution to work. In fact, some users turn residual correc-
tion and smoothingon as default. This isnot recommended however because, for the
majority of cases the code developers have seen, these parameters seem to hurt more
than help. It probably depends a lot on the type of configuration or case being run.

19.Try running a different turbulence model that is more robust (Baldwin-Lomax and
Spalart-Allmaras are probably the most robust of the models). Then restart the case
from this converged solution using the desired model.

20.Monitor cfl3d.turres. Make sure there are either no or relatively few nneg values.
Make sure the residual of the turbulent equations is not goingup gradually over time
rather than down. If there are problems, try settingfactor lower in the appropriate
turbulent model subroutine (such as subroutinespalart when using the Spalart-All-
maras turbulence model).

21.Sometimes the order of the indices in the grid can make a difference, since the code
performs the approximate factorization (AF) in a particular order. Experience has
shown that it is usually best to let theprimary viscous direction (if there is one), such

CHAPTER 10 Troubleshooting

228 CFL3D User’s Manual

as the direction normal to the wing surface, be the direction. Eventually, at steady-
state, the answer should be the same regardless of the index directions, but how well
the code converges to the steady state can unfortunately sometimes be influenced by
the choice.

22.When restarting and switching turbulence models, it is sometimes necessary, at least
temporarily, to lower the CFL number or time step to get the new solution going. After
a time, the CFL number or time step may then be “bumped up” to the desired level.

23.Hypersonic cases can often be difficult to start. Some suggestions are:

(a) Start with a very low CFL number (on the order of 0.1) and run for a while, then
later ramp it up.

(b) Use mesh sequencing.

(c) Use flux-vector splitting (ifds = 0), at least in the beginning.

(d) Restart from a previous similar solution.

(e) Experiment with varyingmitL (number of iterations on each multigrid level).

24. If the residuals near patched boundaries are high (particularly when the grid sizes are
very different near the patch), try replacing calls toint2 with calls toint3 instead
(int3 employs gradient limiting on the patch stencil).

k

